Granular Cell Tumor

Granular cell tumor, also known as Abrikossoff tumor, is a very infrequent benign neoplasm affecting all parts of the body, but with a predilection for the head and neck region. In the head and neck region most cases are localized in the oral cavity, especially the tongue. Granular cell tumor (GCT) is twice as common in females as in males. These tumors usually present as a solitary slow-growing ulcerated nodular mass located mainly in the subcutaneous tissue. The lesion is mobile and not painful with mild pruritus. Multiple development of granular cell tumor can be seen associated with Noonan syndrome and Neurofibromatosis. In children, the most frequent presentation of GCT is congenital epulis, arising from the median ridge of the newborn maxilla. The histogenesis of the tumor is from neural or nerve sheath cells. Histopathology of the tumor shows polygonal cells arranged in sheets with granular eosinophil cytoplasm and small nuclei. The granularity of the tumor cells is due to accumulation of secondary lysosome in the cytoplasm of the cells. An aggressive malignant variant of granular cell tumor is extremely rare. There are no well-defined criteria for the diagnosis of malignancy. Tumor size > 5 cm, rapid growth, vascular invasion, necrosis and cell spindling are important indicators of atypia pertaining malignancy. Occurrence of metastasis is the only accepted criteria of malignancy. Malignancy when present is associated with a poor prognosis. Management of granular cell tumor consists of complete surgical excision. Recurrence is uncommon unless surgical excision has been incomplete. Follow-up must be prolonged.

References:

Watersport Injuries

Injuries related to personal watercraft have increased dramatically over the past several
years, becoming one of the leading causes of recreational watersport injuries. Median age of the accident is generally 10 years. Towed tubing which involves riding an inflatable tube while being pulled behind a boat is the most prevalent trauma mechanism in watersport injury. This is followed by accidents involving motorboats and accidents involving a personal watercraft. Towed tubing accidents has a longer hospital stay since this mechanism account for an increased morbidity in comparison with other recreational activities. It is strongly suggested that wearing protective gear and protective wet suit should be recommended for children involved in watercraft and watersport activities. Mandatory speed limit regulations should be considered to decrease the risk of serious injury due to the specific category of the watercraft injury. Propeller injuries can produce an increase incidence of distal limb amputations. Almost 20% of all boating fatalities and 8% of all non-fatal injuries are associated with accidents in which alcohol or drugs were contributing factors. Jet ski accidents tended to result in more serious injuries (closed-head injuries, hollow and solid viscus injuries, chest trauma, spinal injuries leading to paralysis, and death) than those sustained in accidents with small boats. It is also recommended life vest and easily visible personal floating devices be used by children and adolescent riding watercrafts. Increased use of personal floating device, avoidance of dangerous currents, and less alcohol use by operators and passengers of all types of watercraft would result in a reduction in watercraft-related drowning. Government statistics on personal watercraft injuries do not accurately reflect the true incidence and economic impact of such trauma. Mandatory educational programs and increased legislation to improve personal watercraft safety should be promoted.

References:

Stuck Catheter

Totally implantable venous access devices are essential for providing therapy for children with cancer, long-term medication, parenteral nutrition and sampling. Unfortunately they are no without complications during insertion, maintenance and removal. Removal occurs with resolution of disease, dysfunction or infection of the device. One of the most feared complications during removal is the stuck catheter. The catheter after a prolonged period of use is fixed to the vessel wall. The catheter is stuck in strong connective fibrous tissue matrix to the vessel wall. This occurs more commonly
with polyurethane catheter than silicone catheters. In fact polyurethane catheters are contraindicated if its going to be in use for more than 18 months. The management of a stuck catheter should follow a course of action encompassing dissection along the subcutaneous tract until the entrance to the vein is encountered. A stiff guide wire can be inserted into the lumen of the catheter and instead of applying a “pull-out” force, use a “push-in” force to detach the catheter from the deep central vein. When the forced “pull-out” maneuver is used, the catheter can stretch and will likely break if the tension exceeds the tolerance of the catheter. The soft J tip of the guide-wire prevents puncture of the catheter or the wall of the heart and vein during the maneuver. In other occasion the catheter will brake during removal and either stay stuck in the vein or embolize. In such situation endovascular retrieval by interventional radiologist of the segment of left catheter is indicated due to the inherent risk of infection and venous thrombosis. Have found useful after passing the wire to the stuck catheter cleaning the adherence of fibrin reintroducing a new sheath through the catheter fluoroscopically-guided.

References: