UNFOLDING m-GENUS TORI AROUND CAYLEY GRAPHS

I. J. Dejter
Department of Mathematics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

ABSTRACT

An interactive development between Topology and Combinatorics is constituted by the embedding of (Cayley) graphs in manifolds. See for example [5], [6], [7] and [9]. A variation of this is the unfolding of surfaces around graphs, specially infinite graphs having a large amount of symmetry, and in particular Cayley graphs of elementary group rings. It is known that an unfolding of the usual l-genus torus T_l, which is in fact an abelian Lie group $S^1 \times S^1$, can be unfolded around the Cayley graph of the group ring $\mathbb{Z}[\mathbb{Z}]$ of linear combinations of sixth roots of unity in the complex plane \mathbb{C}, (which is nothing but a tesselation of contiguous equilateral triangles in the plane), by lifting to the Lie algebra $\mathbb{R}^1 \times \mathbb{R}^1$ via the exponential map of that Lie group. In this case, it was convenient to identify T_l with the quotient space obtained from a double equilateral triangle contained in the tesselation above by identifying isometrically and with the same orientation opposite sides of the resulting parallelogram. We generalize this to the case of 2n-th roots of unity, for odd $n > 1$, leading to periodical surfaces in Euclidean space \mathbb{R}^{n-1}. This generalization is the natural setting to extend the results of [10] and [11] to maximizing the order of graphs of genus greater than 1, for given values of their diameter and degree.

The Graph Theory notation that we use is as in [2]. A graph map γ from a simple graph $G' = (V_G', E_G')$ into a graph (V_G, E_G) is a pair of maps $\gamma_V: V_G' \rightarrow V_G$ and $\gamma_E: E_G' \rightarrow E_G$ such that the edge $\gamma_E((v,w))$ is incident to vertices $\gamma_V(v)$ and $\gamma_V(w)$, where $(v,w) \in E_G'$, is incident to vertices v and w in G'. A graph map $\gamma = (\gamma_V, \gamma_E)$ is injective, respectively surjective, if both γ_V and γ_E are injective, resp. surjective.

Let G and G' be graphs embedded respectively in connected surfaces M and M' by means of graph embeddings $f: G \rightarrow M$ and $f': G' \rightarrow M'$, [9], and let $f_G: G \rightarrow G$ be a surjective graph map. The surface M' is an unfolding of M around G' by means of f_G if there exists a piecewise linear map $f_M: M' \rightarrow M$ such that:

Ars Combinatoria, 20-A (1985), pp.125-133
1. f_{M} induces f_{G};
2. $f_{G} = f_{M} \circ f'$, where \circ stands for composition.

In this case, we say that $(f_{M}^{*}, f_{G}^{*}) : (M', G') \to (M, G)$ is a folding map.

A local Riemann surface M' is a surface that looks locally like a Riemann surface, [1]. The main object of this paper is to establish some facts about the following.

Unfolding Problem:

Let M be a (piecewise linear or differentiable) surface and let G, G' and G'' be graphs such that G'' induces G'. Given a surjective graph map $f_{G} : G' \to G$ and a graph embedding $\xi : G \to M$, we look out for a (piecewise linear, differentiable or locally Riemann) surface M' containing G' by means of a graph embedding $f' : G' \to M'$, and for a folding map $(f_{M}', f_{G}') : (M', G') \to (M, G)$. If these objects exist, we say that M' is an unfolding of M around G'. Moreover, if the embedding f' is the restriction of an embedding $f'' : G'' \to M'$, we still say that f'' is an unfolding of M around G''.

In fact, we concentrate here into the cases for which M is the orientable surface of genus m or m-genus torus T_{m} obtained by attaching a 2-cell to a graph G with one vertex and $m+1$ loops. We want to unfold T_{m} around (an induced subgraph G' of) the graph $G'' = G_{m}$ that we define subsequently.

Let $n = 2m + 1$ and let V_{m} be the group ring $\mathbb{Z}[[Z_{2n}]]$ of linear combinations of unit roots of $2n$ in the complex plane \mathbb{C} with integer coefficients together with the usual complex sum and product. It is easy to see that V_{m} is:

i. A set of countable cardinality.

ii. Dense in the usual topology of \mathbb{C} iff $m > 1$.

iii. Invariant with respect to the natural affine action of the algebra $\mathbb{Z}[[Z_{2n}]]$ on V_{m},

\[* \, k : \mathbb{Z}[[Z_{2n}]] \times V_{m} \to V_{m}, \]

given by

\[* \, k(s, t) = s \cdot t, \]

where $s \in \mathbb{Z}[[Z_{2n}]]$, $t \in V_{m}$ and the multiplication in the right hand side is the usual one in the complex plane \mathbb{C}.

The Cayley graph, ([9]), of the group $(V_{m}, +)$ can be described as
the graph G_m with set of vertices V_m and adjacency relation given on any pair v and w of elements of V_m by
* $\text{dist}(v,w) = 1$,
where dist is the usual distance in the complex plane.

Thus, there is a standard geometric representation $K_m = (V_m, E_m)$ of $G_m = (V_m, E_m)$ in C which is:

i. Edge unimodular, i.e. each edge of K_m has unit length, and

ii. Invariant with respect to the natural affine action of $Z[Z_{2n}]$ on K_m,

* $\Gamma: Z[Z_{2n}] \times (V_m, E_m) \to (V_m, E_m)$,
given by $\Gamma = (\ell, \partial)$, where $\partial: Z[Z_{2n}] \times E_m \to E_m$ is defined by $\partial(s, (u,v)) = (\ell(u), \ell(v))$.

iii. Countable, that is, both V_m and E_m are countable. In particular, let $\Psi = (v_1, w_1), \ldots, (v_{\beta}, w_{\beta}), \ldots$, be a sequence covering all of E_m.

We consider the infinite graph K_m as a cell complex or CW-complex C_k, $[8]$, as follows.

1. The 0-dimensional skeleton C_{k_0} is defined to be V_m as a subset, naturally furnished with the discrete topology of C_m. For convenience, let $\alpha: V_m \to C_m$ be a (not a continuous) function induced by the identity of V_m.

2. The 1-dimensional skeleton C_{k_1} is obtained from C_{k_0} by attaching a 1-cell, (or closed segment), to each pair of G_k-adjacent vertices, and this can be performed inductively. In other words, assuming that β 1-cells were already attached to C_{k_0}, yielding a CW-complex D_β, let v and w be adjacent vertices in G_k such that $\alpha(v)$ and $\alpha(w)$ are not joined by a path with its interior in $D_\beta - C_{k_0}$ and consider an immersion onto a a 1-cell $e_{\beta+1}$,

* $\psi: \{\alpha(v), \alpha(w)\} \to e_{\beta+1}$

with $\psi((v,w)) = \text{boundary } (e_{\beta+1})$, which is used to obtain the adjunction topological space, $[8])$:

* $D_\beta + 1 = D_\beta \cup e_{\beta+1}$

obtained by the attachment of $e_{\beta+1}$ to D_β via ψ.

To solve our unfolding problem we take G' to be the induced subgraph
obtained from G_m by deletion of all its horizontal edges, (or alternatively, all edges parallel to a prefixed edge) and notice the following items.

a. It is convenient to have at hand the following characterization of T_m

Let τ be a convex regular n-gon and let L be the straight line determined by one of the sides of τ, (or maximal convex subsets of the frontier of τ). A double regular n-gon H in the plane is the union of such a τ and the image of this τ under a plane reflection whose axis of symmetry is an L as above. Such an H is a $4m$-gon whose boundary is formed by $2m$ pairs of parallel opposite sides $\{s_1, t_1\}, \ldots, \{s_{2m}, t_{2m}\}$, where s_i, resp. t_i, is a plane segment A_iB_i, resp C_iD_i, such that A_iC_i and B_iD_i are also parallel, for $i = 1, \ldots, 2m$. Let $f_i : s_i \to t_i$ be an isometric correspondence under the usual metric on the plane, such that $f_i(A_i) = C_i$, for $i = 1, \ldots, 2m$.

The f_i define an equivalence relation R on the boundary of H having the set of vertices of H as one of its equivalence classes and such that the other equivalence classes have cardinality two. It can be easily seen that the quotient topological space H/R coincides with T_m.

b. Consider the set σ of cycles of length n in G_m.

b1. The image of each of these n-cycles in K_m is the boundary of a regular n-gon having an horizontal side in the usual complex plane representation.

b2. Moreover, σ can be partitioned into two classes, namely the sets σ_u and σ_r of those n-cycles whose filling n-gons, i.e. convex hulls, have their interiors in the upper and lower semiplanes determined by the extension straight lines of their horizontal sides.

b3. Notice that each horizontal side determined by an n-cycle is common to two such cycles, one in σ_u and the other one in σ_r. The sum of these n-cycles is a $2m$-cycle whose image in K_m is the boundary of an H as in a. above.

b4. Both σ_u and σ_r are countable, as is σ. In fact, let c_1, \ldots, c_{2s} be the subsequence in σ of edges in G_m whose images in K_m are horizontal segments, being each c_i the lower (resp. upper) edge of a cycle $g_{u,i}$ or $g_{r,i}$ in σ_u (resp. $g_{u,i}$ in σ_r). Thus $\mu = g_1, \ldots, g_s = g_{u,1}, g_{r,1}, \ldots, g_{u,r}, g_{r,r}$ is a sequence covering σ.

c. We construct inductively a 2-dimensional CW-complex M_m out of the 1-dimensional CW-complex K_m in the following way.

cl. For each n-cycle g in G_m, we consider its image g' in K_m and the
convex regular n-gon g' formed by g'', i.e. the convex hull of g' in the plane. Now consider the union X of g and K_m. Strictly speaking, X is the adjunction space $K_m \cup_{\delta} \overline{g}$ of the 2-dimensional cell g to K_m via the embedding $\delta: g'' \to \overline{g}$.

c2. By means of b4. above, we may suppose that cl. was performed for $g=g_1$. Inductively, suppose that we have already obtained the adjunction space $K'_m=K'_m, b$ of K_m by the attachment of the b convex regular $2m$-gons corresponding to the n-cycles g_1, \ldots, g_b. For each remaining n-cycle g in G_m, out of g_1, \ldots, g_b, consider the image g' of g in K_m and the convex regular n-gon \overline{g} formed by g'. Consider the union X of g and K'_m,b' which can be considered as the adjunction space

\[K'_m, b+1 = K'_m, b \cup_{\delta} \overline{g}_{b+1}, \]

where $\delta_{b+1} : \overline{g}_{b+1}$ is the obvious embedding, if g'_{b+1} is the image of g_{b+1} in K_m,b and \overline{g}_{b+1} is its convex hull.

The direct limit M_μ of the sequence of topological spaces $K'_m, b+1$ generated by this inductive procedure is the disjoint union of all the convex hulls of all the images of elements of the sequence μ defined in b4 to K_m.

c3. Consider an n-cycle ϕ in G_m. In the construction procedure just given, the image of ϕ in K_m was filled with a 2-dimensional cell which is geometrically a convex regular n-gon θ. ϕ contains a horizontal edge η (in $C=R^2$) and we may assume that θ is the upper semiplane to the straight line λ determined by η. Then there is another convex regular n-gon θ' which is obtained from θ by the reflection with straight line axis λ. The union κ of θ and θ' can be considered as a compact subset of M_m and as a double regular $2n$-gon because is isometric (in the local metric inherited from the plane) to the H conceived in a. above. The subgroup of translations of $Z[Z_{2n}]$ acts on M_m taking κ to similar isometrical copies in M_m'. Let the vertices of θ be ordered by counterclockwise adjacency around the center of θ:

\[A_1, A_2, \ldots, A_n, \]

starting with A_1 at the leftmost end of η, with corresponding opposite vertices in θ' with respect to the center of κ:

\[A'_1, A'_2, \ldots, A'_n. \]

Then, $A'_1=A_n$ and $A_1=A'_n$. We define an isometrical identification between each pair of opposite edges (A_1, A_1+1) and (A'_1, A'_1+1), for
i = 1, \ldots, n - 1. Then the quotient topological space obtained from \kappa by the equivalence relation established by the set of these identifications is homeomorphic to the m-genus torus T^m, with m loops incident to a vertex, each loop being the image of a pair of opposite edges with respect to the center of \kappa, and the vertex being the image of the vertices of \kappa. Let \beta: x \mapsto T^m be the quotient map associated to this remark.

Moreover, the images of \kappa through the action of any element of the algebra \(Z[2n] \) are also good to obtain the same \(T^m \), by the corresponding identifications on their boundaries. This means in particular that all the nonhorizontal edges of \(K \) in a particular class of parallelism in the plane are mapped into a particular loop in \(T^m \); and every loop is the image of one such particular parallelism class of edges. The interior points of \(\kappa \) (or any image of it by the action of an element of \(Z[2n] \)) are mapped into the interior points of the 2-dimensional cell whose attachment to the above graph of one vertex and m loops produced \(T^m \). In particular, the action of any translation of \(Z[2n] \) in \(\kappa \) commutes with \(\beta \).

To show that \(M^m \) is an unfolding of \(T^m \) around \(G^m \), we will prove that \(M^m \) is a locally Riemann differentiable surface, in what follows.

In fact, each element \(v \in V^m \) is a vertex of 2n convex regular n-gons \(G_1, \ldots, G_{2n} \), such that \(G_i \) and \(G_{i+1} \) have a unit side \(s_i \) in common, for \(i = 1, \ldots, 2n \), i.e. \(G_i \cap G_{i+1} = s_i \) and the intersection of all these \(G_i \) or \(s_i \) equals \(v \), for \(i = 1, \ldots, 2n \). These n-gons allow the visualization of a conformal structure defined in a neighborhood \(N(v) \) of \(v \) in \(M^m \). Establishing such a neighborhood \(N(v) \) for each \(v \in V^m \), such that the whole collection of the \(N(v) \) covers \(M^m \), allows to see that \(M^m \) is in fact a local Riemann surface.

Alternatively \(M^m \) can be viewed as a periodical minimal surface [3], embedded in \(\mathbb{R}^{2m} \), in the following fashion. Consider the unit 2m-dimensional cube \(C = [0, 1]^{2m} \). Let \(C(a_1, \ldots, a_{2m}) \) be the (1-dimensional side of \(C \)) given by \(C(a_1, \ldots, a_{2m}) = \{(x_1, \ldots, x_{2m}) ; 0 \leq x_i \leq 1 \text{ and } x_j = a_j \text{ for } j \neq i\} \), where exactly one coordinate \(i \) is selected such that all the \(j = 1, \ldots, 2m \) with \(j \neq i \) have \(a_j \) equal either to 0 or to 1, while \(0 < a_i < 1 \). Consider the path \(D \) given by the composition or union of the following segments, beginning at the origin in \(\mathbb{R}^{2m} \):

\[
* \quad C(\rho, 0, \ldots, 0), C(1, \rho, 0, \ldots, 0), \ldots, C(1, 1, \ldots, 1, \rho),
\]
and consider the path D' obtained from D by reflection through the center of C. The composition or union of D and D' is a circuit of the graph given by the 1-dimensional skeleton of C, representing a closed simple curve S in the boundary of C. There is a minimal surface $M(0, \ldots, 0)$ inside C whose boundary is S. Moreover, by an integer coordinate parallel translation $t(b_1, \ldots, b_{2m})$ given by

$$
(c_1, \ldots, c_{2m}) \rightarrow (c_1 + b_1, \ldots, c_{2m} + b_{2m}),
$$

where $(c_1, \ldots, c_{2m}) \in \mathbb{R}^{2m}$, we can take the cube $C = C(0, \ldots, 0)$ onto another cube $C(b_1, \ldots, b_{2m})$. Thus a parallel minimal surface procedure can be performed in $C(b_1, \ldots, b_{2m})$ to produce a minimal surface $M(b_1, \ldots, b_{2m})$ with boundary $S(b_1, \ldots, b_{2m})$ obtained by the translation $t(b_1, \ldots, b_{2m})$ from $S = S(0, \ldots, 0)$.

Furthermore, the union $\text{Mext}(0, \ldots, 0)$ of those $M(b_1, \ldots, b_{2m})$ in \mathbb{R}^{2m} with (b_1, \ldots, b_{2m}) varying in the set

$$
(0, \ldots, 0), (0, \ldots, 0, 1), (0, \ldots, 0, 1, 1), \ldots, (0, 1, \ldots, 1),
$$

$$
(1, \ldots, 1), (1, \ldots, 1, 0), (1, \ldots, 1, 0, 0), \ldots, (1, 0, \ldots, 0),
$$

in Z^{2m} is a C^∞-differentiable minimal surface with boundary, homeomorphic to the subspace of M_m formed by the union of the double regular n-gons κ, (as in c3), sharing the origin of C.

So that $\text{Mext}(0, \ldots, 0)$ can be continually extended to a boundaryless periodical C^∞-differentiable minimal surface Q_m, ([3]), in such a way that if $a \in Z^{2m}$ is in Q_m, then Q_m contains $\text{Mext}(a)$.

We invest M_m with the differentiable structure provided by Q_m, so that we can concentrate our results in the following.

Theorem 1. M_m is a canonical unfolding of T_m around the (induced subgraph, G' of the) Cayley graph $G_m = G_m$ (obtained by deletion of all the edges parallel to a prefixed one) with only one singularity tm in T_m iff $m > 1$. Out of t_m, the corresponding folding map $S_m : M_m \to T_m$ onto T_m is a topological and differentiable covering. Moreover, the inverse image of t_m through S_m is V_m; V_m is dense in C unless $m = 1$, case for which M_m is C, the Lie algebra of the toral group T_1.

Proof

From the previous remarks, let us see that we obtained M_m as an unfolding of T_m. In fact, the quotient map

$$
\omega = \omega(0, \ldots, 0) : \kappa = \kappa(0, \ldots, 0) \to T_m
$$

produces, by translations in $\mathbb{Z}[Z_{2n}]$, a collection of maps
\[\omega(b_1, \ldots, b_{2m}) \cdot \kappa(b_1, \ldots, b_{2m}) \in T_m \]
equivalent to \(\omega \), in the sense that those translations commute with \(\omega \) and each \(\omega(b_1, \ldots, b_{2m}) \) over \(T_m \), and more generally, they commute with pairs of different \(\omega(b_1, \ldots, b_{2m}) \) over \(T_m \). Since the parallelism class defined by an edge of \(\kappa(b_1, \ldots, b_{2m}) \) is mapped onto its corresponding loop in \(T_m \), as a covering out of the distinguished vertex \(t_m \) in \(T_m \), and this happens for each such a parallelism class, we note that a quotient map

\[f_M : M_m \to T_m \]
is obtained well defined as an extension of each \(\omega(b_1, \ldots, b_{2m}) \). This is further confirmed from \(c3' \), since any element in \(Z[Z_{2m}] \) could define a different family of double regular \(n \)-gons, with horizontal middle edge rotated an angle of \(2\pi/2n \) radians, (or the equivalent versions in \(Q_m \), which transforms geodesics back and forth into axes), so that the symmetry provided by the \(Z[Z_{2m}] \)-action on \(M_m \) and \(K_m \) allows to homogenize the model given by double regular \(n \)-gons.

We also mentioned the distinguished vertex \(t_m \) in the bouquet of loops from which \(T_m \) is obtained by the attachment of a double regular 2n-gon. If \(m = 1 \), then it is clear that \(t_m \) is not a singular point in \(M_m \), because \(M_m \) is just the plane. However, if \(m > 1 \), we are rotating a total angle of \((n-2)2\pi \) radians around \(t_m \), say counterclockwise, when attaching convex regular \(n \)-gons side by side, with a common vertex identified to \(t_m \), as part of the induction procedure of \(c1 \) and \(c2' \), implying that \(t_m \) is a singular point of \(M_m \) in this case. Moreover, the inverse image of \(t_m \) in \(M_m \) coincides with \(V_m \), because of our construction. Also, it is clear that \(f_M \) restricted from \(M_m \to V_m \) onto \(T_m - \{ t_m \} \) is a topological and differentiable covering. Finally, \(k = 1 \) leads just \(f_M \) as the standard exponential map of the Lie algebra which is \(M_1 \) over \(T \).

Remark. The unfolding \(M_m \) of \(T_m \) around \(G_m \) or \(K_m \) is canonical in the sense that any other unfolding of \(T_m \) around \(K_m \) is obtained through the action of an element of the algebra \(Z[Z_{2m}] \) on \(M_m \). In the periodical minimal surface version, this means that a parallelism class of geodesics becomes one of straight lines parallel to one of the coordinate axes, and vice versa.

References
2. B. Bollobas, Graph Theory, An Introductory Approach, Springer-Ver

